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Abstract In this paper, an approximation-based event-triggered model predictive control (AETMPC)

strategy is proposed to implement event-triggered model predictive control for continuous-time con-

strained nonlinear systems under the digital platform. In the AETMPC strategy, both of the optimal

control problem (OCP) and the triggering conditions are defined in a discrete-time manner based on

approximate discrete-time models, while the plant under control is continuous time. In doing so, sens-

ing load is alleviated because the triggering condition does not need to be checked continuously, and

the computation of the OCP is simpler since which is calculated in the discrete-time framework. Mean-

while, robust constraints are satisfied in a continuous-time sense by taking inter-sampling behavior into
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consideration, and a novel constraint tightening approach is presented accordingly. Furthermore, the

feasibility of the AETMPC strategy is analyzed and the associated stability of the overall system is

established. Finally, this strategy is validated by a numerical example.

Key words Approximations, event-triggered control, model predictive control, sampled-data sys-

tems.

1 Introduction

Networked control systems (NCSs) have been widely used in recent years due to the fact
that it has many benefits which include but are not limited to simpler maintenance, installation,
and lager flexibility[1]. However, the imperfect communication networks also bring some chal-
lenges. For example, the limited communication resources (e.g., the limited channel capacity,
the battery-powered sensors in wireless networks) imposes the needs of efficient transmissions
for NCSs. Event-triggered control is a relatively satisfactory scheme because the sensing or
control data is transmitted only when some prescribed conditions are violated. In this way,
event-triggered control can save the network resources. Therefore, studies on event-triggered
control for NCSs have arisen great attention, see, e.g., [2–7]. In another research line, model
predictive control (MPC) is a powerful tool to cope with constrained nonlinear systems, and
thus has been widely utilized to study nonlinear NCSs[8]. But performing MPC needs to com-
pute an optimal control problem (OCP) which in general causes a large computation burden.
Fortunately, event-triggered control mentioned above provides an opportunity to alleviate this
issue through reducing the number of solving the OCP. By recognizing the aforementioned ad-
vantages, we combine the event-triggered mechanism (transmission policy) and MPC (control
scheme), and an efficient event-triggered MPC (ETMPC) algorithm can then be obtained.

In this work, we focus on how to implement the ETMPC algorithms for the nonlinear NCSs
with continuous-time plant and digital controller. One may notice that both the continuous- and
discrete-time signals co-exist in overall systems, which can be named “sampled-data systems”.
That is, the ETMPC for such system is also called sampled-data ETMPC.

Generally speaking, studies on sampled-data ETMPC can be mainly divided into two cat-
egories, namely, continuous-time ETMPC[2–4] and discrete-time ETMPC[5–7]. The continuous-
time ETMPC is more natural as the considered plants are modeled by differential equations
subjected to continuous-time constraints. Hence, the corresponding solutions lead to the con-
straints satisfaction in a continuous-time sense. But for the event-triggered mechanism, the
prescribed triggering conditions need to be checked continuously repeated, which results in the
promotion of the sensing cost[2, 3]. To overcome this drawback, ETMPC for continuous-time
nonlinear systems with intermittent sampling is proposed in [4], where the triggering condi-
tion is checked only at specified sampling instants. However, in all these works, the differential
equations are regarded as a constraint in the OCP, which is computationally intractable in solv-
ing such an OCP[9]. On the contrary, in discrete-time ETMPC, the computation of the OCP
is tractable by exploiting the discrete-time model (DTM) delineated by difference equations
directly and the triggering condition does not need to be continuously evaluated. Therefore,
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the implementation of ETMPC in a discrete-time framework is simpler and has lower sensing
load[7]. Nonetheless, two problems also arise: 1) The required DTM may not be available for
generic continuous-time nonlinear systems; 2) The state constraints are considered only at each
sampling instant, thus the inter-sampling behavior is neglected, leading to continuous-time state
constraints unsatisfaction[10].

Considering the above two frameworks with their advantages and disadvantages, we propose
an approximation-based ETMPC (AETMPC) strategy, which introduces approximate DTM[11]

to approximate the original continuous-time dynamics. With this strategy, the advantages of
the continuous-time constraints satisfaction in the continuous-time framework and the simple
computation as well as lower sensing load in the discrete-time framework are all maintained.
Additionally, the recursive feasibility and stability are established. The main contributions of
this paper are twofold:

• The advantages of our proposed AETMPC strategy over the existing results in [2–4, 12]
have three aspects. Firstly, the approximate DTM and the discretized cost function in our
AETMPC facilitates the solution of OCP. Secondly, the event-triggered condition is checked
periodically (rather than continuously repeated), which results in the reduction of network
load and energy consumption of the sensor. Thirdly, the event-triggered conditions provide a
guideline to determine the allowable sampling period.

• A novel constraint tightening approach for the formulation of OCP is developed. Compared
with the earlier studies on ETMPC[5–7] where the constraints are either neglected or considered
only at sampling instant, our approach accounts fully for the inter-sampling behavior (the states
during two consecutive sampling instants), ensuring constraints satisfaction in a continuous-time
sense in presence of model error and external disturbances.

This paper is organized as follows. In Section 2, the problem statement is provided. Section 3
proposes the approximation-based event-triggered model predictive control strategy. Section 4
performs the feasibility and stability analysis. The effectiveness of our proposed strategy is
verified by a numerical example in Section 5. Section 6 summarizes this paper.

Notations Let R and Z0 represent the real and nonnegative integers, respectively. R
n

denotes the n-dimensional Euclidean space. A matrix P is called positive definite if P > 0.
For a vector x, its Euclidean norm is denoted by ‖x‖ :=

√
xTx, and the P -weighted norm

is denoted by ‖x‖P :=
√

xTPx. w[t1,t2] is a signal from t1 to t2 and its subscript can be
omitted for simplify when it can be derived from context. x(tk+i|tk), k, i ∈ Z0, indicates the
ith predicted state based on the current state x(tk), and u(tk+i|tk) is similar. For two sets
A, B ⊆ R

n, A�B := {x : x + y ∈ A, ∀y ∈ B} denotes the Pontryagin difference set. K denotes
a class-K, K∞ is a class-K∞, and KL is a class-KL function, see [13] for details.

2 Problem Statement

Consider the following continuous-time constrained nonlinear control system

ẋ(t) = f(x(t), u(t)) + w(t), t ≥ 0, (1)
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where x(t) ∈ R
n represents the system state, u(t) ∈ R

m represents the control input, and w(t) ∈
R

n is the external disturbance. They are subject to continuous-time constraints described below

x(t) ∈ X , u(t) ∈ U , w(t) ∈ W , (2)

where the compact sets X ,U contain the origin, and W = {w(t) ∈ R
n : ‖w‖R ≤ ξ} with a

positive definite matrix R. Let ϕ(t; x0, u, w) be the solution of the system (1) at time t with
initial value x(0) = x0, control input u, and disturbance w. In addition, the function f should
satisfy the following assumption.

Assumption 2.1 f(x, u) is local Lipschitz continuous with constant Lf > 0 depending
on the weighted matrix R, i.e., ‖f(x, u) − f(y, u)‖R ≤ Lf‖x − y‖R, ∀x, y ∈ X , u ∈ U .

Let tk = kT denote the sampling instant with k ∈ Z0 and T being the sampling period,
and let tkj be the jth triggering time instant. The schematic block diagram of the overall
system structure is depicted in Figure 1, and the whole executing procedure of the sampled-
data ETMPC algorithm is elaborated as the following steps:

Step 1 At any sampling instants tk, the sensor measures the state x(tk), and the event
trigger checks the triggering conditions based on x(tk). If the triggering conditions are trans-
gressed, x(tk) is transmitted to the remote controller and denote the current triggering instant
by tkj = tk; otherwise, perform Step 3.

Step 2 The remote controller (MPC algorithm with prediction horizon tkj+N − tkj and
initial condition x(tkj )) is carried out to generate the predictive control input sequence û(tkj ) =
{û(tkj |tkj ), û(tkj+1|tkj ), · · · , û(tkj+N |tkj )}.

Step 3 The actuator implemented with a zero-order holder applies the control input u(t) =
û(tk|tkj ), ∀t ∈ [tk, tk+1) to the continuous-time plant, where tkj is the latest triggering instant
satisfying tkj ≤ tk < tkj+1 .

The above three steps describe the basic mechanism of the sampled-data ETMPC and the
roles of all components in Figure 1. What remains to be designed are the MPC algorithm and
the triggering condition.

Figure 1 The framework of sampled-data ETMPC (The solid line and the dashed

line denote the continuous- and discrete-time signal, respectively)
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At each triggering instant tkj , performing the MPC algorithm means an OCP is solved to
provide the optimal predictive control sequence û(tkj ). Therefore, the formulation of the OCP
(including the cost function and constraints) is the key to design the sampled-data ETMPC
algorithm successfully. For continuous-time plant, the cost function based on the state x(tkj )
in general has the following expression (see, e.g., [3, 12, 14])

J(x(tkj ), u(tkj ), N) =
∫ tkj+N

tkj

l(x̂(τ |tkj ), û(τ |tkj ))dτ + g(x̂(tkj+N |tkj )), (3)

where l(x, u) : R
n×R

m → R
+ is the stage cost and g(x) : R

n → R
+ is the terminal cost. x̂(t|tk)

and û(t|tk) are, respectively, the predicted state and control input. Both of them are subject
to constraints in (2) and are calculated depending on the DTM of the original system (1)

x̂(tk+i+1|tk) = F e
T (x̂(tk+i|tk), û(tk+i|tk)),

x̂(tk|tk) = x(tk),

x̂(tk+i|tk) ∈ X , û(tk+i|tk) ∈ U ,

tk+i = tk + iT,

(4)

where F e
T is the disturbance-free exact DTM, while the exact DTM of the system (1) is expressed

as x(tk+1) = F e
T (x(tk), u(tk))+wT,tk

with F e
T (x(tk), u(tk)) = x(tk)+

∫ tk+1

tk
f(x(τ), u(tk))dτ and

wT,tk
:=

∫ tk+1

tk
w(τ)dτ .

If we combine the cost function (3) and the constraints (4) to formulate the OCP, some
problems arise: (i) The cost function requires continuous-time x̂(τ |tk) and û(τ |tk), which are
not available under the DTM in (4); (ii) The explicit expression of the exact DTM F e

T cannot
be obtained for general nonlinear systems; (iii) The continuous-time constraints (2) may not be
satisfied as the inter-sampling behavior is neglected in constraints (4).

After formulating the MPC algorithm, we then need to give the triggering condition that
determines the time instants when the state is transmitted and the MPC algorithm is performed.
The triggering condition is usually designed as

‖x(tk) − x̂(tk|tkj )‖ ≤ η, (5)

where x(tk) is the actual state, x̂(tk|tkj ) is the predicted one, and η is the triggering threshold.
Note that the triggering threshold not only reflects the allowable prediction error of the state
but also affects the feasibility of the sampled-data ETMPC algorithm[4].

With the above descriptions, our objective is to reformulate the OCP (the cost function
and constraints) to overcome the problems caused by (3) and (4), and to design the triggering
threshold η in (5) such that the sampled-data ETMPC algorithm is feasible and the overall
system can be stabilized.

Before proceeding, we introduce a necessary definition.

Definition 2.1 (see [15]) Given two compact sets X ,W ⊆ R
n that contain the origin.

A control system ẋ(t) = f(x(t), w(t)) is input-to-state practically stable (ISpS) if there exist
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functions β ∈ KL, γ ∈ K∞ and a constant σ > 0 such that, for any initial condition x0 ∈ X
and each bounded input w(t), the solution x(t) exists for all t ≥ 0 and satisfies, with ξ =
supw∈W ‖w‖,

‖x(t)‖ ≤ β(‖x0‖, t) + γ(ξ) + σ. (6)

3 AETMPC Strategy

In this section, to achieve our objective, the AETMPC strategy is proposed. First of all,
the redefined OCP is introduced in Subsection 3.1, based on which the event-triggered scheme
is designed in Subsection 3.2.

3.1 The OCP in the AETMPC

This part reformulates the OCP in the AETMPC on the basis of the approximate approach.
The key is to redefine the cost function and the predictive model. First, we introduce the
approximate DTM which is significant in solving the OCP. Given the sampling period T , the
disturbance-free approximate DTM of the system (1) is denoted by

x(tk+1) = F a
T (x(tk), u(tk)), (7)

where the explicit expression of F a
T depends on the adopted numerical methods. Taking the

Euler approximation for example, we have F a
T (x(tk), u(tk)) = FEuler

T (x(tk), u(tk)) := x(tk) +
Tf(x(tk), u(tk)). Furthermore, F a

T should satisfy the following assumptions.

Assumption 3.1 Given any sampling period T > 0, F a
T is continuous in u, and the

following two inequalities

‖F a
T (x1, u) − F a

T (x2, u)‖R ≤ eLf T ‖x1 − x2‖R, (8)

‖F e
T (x1, u) − F a

T (x1, u)‖R ≤ T	(T ) (9)

hold with a K∞ function 	 for all x1, x2 ∈ X and u ∈ U .

Remark 3.1 Assumptions 2.1 and 3.1 are standard for the exact and the approximate
DTM, more details can be found in [11, 16]. The inequality (8) implies that F a

T satisfies a local
Lipschitz condition. The inequality (9) limits the one-step model error between F e

T and F a
T

over the time interval [tk, tk+1], and the more accurate F a
T is, the smaller one-step model error

will be. It is necessary to emphasize that the inequality (9) can be checked even though the
explicit expression of F e

T is not available.

Based on Assumption 3.1, we first give the state error between the original system (1) and
the approximate DTM (7) for defining the following tightened set.

Lemma 3.2 Suppose that Assumptions 2.1 and 3.1 hold. Then given x(tk+i) ∈ X ,
u[tk+i,tk+i+τ ] ∈ U , the state error e[tk+i,tk+i+τ ] := ϕ(tk+i+τ ; x(tk+i), u[tk+i,tk+i+τ ], w[tk+i,tk+i+τ ])−
x̂(tk+i|tk) is bounded by

‖e[tk+i,tk+i+τ ]‖R ≤ μτ +
eiLf T − 1
eLf T − 1

(T	(T ) + ξT ), (10)
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where τ ∈ [0, T ) and μ is a constant that makes system function in (1) bounded from above,
i.e., ‖f(x(t), u(t)) + w(t)‖R ≤ μ, ∀x(t) ∈ X , u(t) ∈ U , and w(t) ∈ W.

Proof Note that the constant μ always exists due to the compactness of X ,U and W . First
of all, the state error between the exact DTM and the approximate one is ‖F e

T (x(tk), u(tk)) +
wT,tk

− F a
T (x(tk), u(tk))‖R ≤ T	(T ) + ξT . Then, we cauculate e(tk+i) = x(tk+i) − x̂(tk+i|tk).

According to Assumption 3.1, the fact x̂(tk|tk) = x(tk) and û(tk|tk) = u(tk), and the triangle
inequality, one obtains e(tk+1) ≤ T	(T )+ξT+eLfT ‖x̂(tk|tk)−x(tk)‖R = T	(T )+ξT . Therefore,
by induction, we have

‖e(tk+i)‖R = T	(T ) + ξT + eLf T ‖x(tk+i−1) − x̂(tk+i−1|tk)‖R

≤ eiLf T − 1
eLf T − 1

(T	(T ) + ξT ). (11)

Finally, considering the triangle inequality, it follows that

‖e[tk+i,tk+i+τ ]‖R ≤ ‖ϕ(tk+i + τ ; x(tk+i), u[tk+i,tk+i+τ ], w[tk+i,tk+i+τ ]) − x(tk+i)‖R + ‖e(tk+i)‖R

≤ μτ +
eiLf T − 1
eLf T − 1

(T	(T ) + ξT ). (12)

This proof is completed.
On the basis of Lemma 3.2, the tightened set is defined as Xi = X � Bi, where Bi := {x ∈

R
n : ‖x‖R ≤ μτ + eiLf T −1

eLf T−1
(T	(T )+ξT )}. One can notice that if the predicted state satisfies the

pointwise constraint x̂(tk+i|tk) ∈ Xi, then the continuous-time state constraint (2) is satisfied,
i.e., ϕ(tk+i + τ ; x(tk+i), u, w) ∈ X .

For simplicity, let x̂k+i|k = x̂(tk+i|tk) and ûk+i|k = û(tk+i|tk). With the above preliminaries,
the OCP at time tk in the AETMPC can be stated as follows:

min
u

JT (x(tk), u(tk), N)

s.t. x̂k+i+1|k = F a
T (x̂k+i|k, ûk+i|k),

x̂k+i|k ∈ Xi,

ûk+i|k ∈ U ,

x̂k+N |k ∈ Xf

(13)

with i = 0, 1, · · · , N − 1, x̂k|k = xk and the T -related cost function being given as

JT (x(tk), u(tk), N) =
N−1
∑

i=0

T l(x̂(tk+i|tk), û(tk+i|tk)) + g(x̂(tk+N |tk)), (14)

where l(x, u) = ‖x‖2
Q + ‖u‖2

P is the stage cost, g(x) = ‖x‖2
R is the terminal cost with Q, P, R

being positive definite matrices, and Xf = {x̂ : ‖x̂‖R ≤ εf} is the terminal state constraint
set. Let û(tk) = (ûk|k, ûk+1|k, · · · , ûk+N |k) be the optimal solution of the OCP at time tk and
x̂(tk) = (x̂k|k, x̂k+1|k, · · · , x̂k+N |k) be the corresponding optimal state sequence. The optimal
value function at time tk is J0

T (xk) = JT (x(tk), û(tk), N).
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Remark 3.3 By using the approximate DTM F a
T (7) and the redefined T -related cost

function (14), the above two difficulties (i) and (ii) in Section 2 are overcome. Note that the
T -related cost function chosen here is to ensure the stability of the exact DTM, which is similar
to [16]. Additionally, the novel tightened set guarantees the continuous-time constraints (2)
satisfaction, solving the difficulty (iii).

With the above preliminaries, the MPC algorithm can be computationally tractable under
the digital platform. The following part aims at designing the event-triggered scheme.

Some assumptions needed to develop the main results are given here.

Assumption 3.2 The terminal state constraint set Xf , the terminal cost g(x), the aux-
iliary control law h(x), the stage cost function l(x, u), and another important set Ξ satisfy the
following properties:

1) 0 ∈ Xf , Xf ⊂ Ξ = {x̂ : ‖x̂‖R ≤ εΞ } with 0 < εf < εΞ and Ξ ⊆ {x ∈ XN−1 : h(x) ∈ U};

2) F a
T (x, h(x)) ∈ Xf , ∀x ∈ Ξ ;

3) g(F a
T (x, h(x))) − g(x) ≤ −T l(x, h(x)), ∀x ∈ Ξ ;

4) g(x) is Lipschitz continuous in Ξ with a constant Lg > 0 relying on weighted matrix R, i.e.,
|g(x) − g(y)| ≤ Lg‖x − y‖R, ∀x, y ∈ Ξ ;

5) g(x) is bounded, that is, α̃1(‖x‖) ≤ g(x) ≤ α̃2(‖x‖) with α̃1, α̃2 ∈ K∞, ∀x ∈ Ξ ;

6) l(x, u) is Lipschitz continuous with a constant Ll depending on weighted matrix R, i.e., the
inequality |l(x, u) − l(y, u)| ≤ Ll‖x − y‖R, ∀x, y ∈ X , u ∈ U holds;

7) l(x, u) ≥ α̃3(‖x‖) with α̃3 ∈ K∞, ∀x ∈ X , u ∈ U ;

8) there exist θ ∈ K∞ such that f(x, u) ≤ max{ε, θ(1/ε)l(x, u)} holds for all x ∈ X , u ∈ U and
ε > 0.

Remark 3.4 The properties 1)–7) are fairy standard in the literature of MPC, which also
provide some guidelines to choose h(x) Xf and Ξ , several methods can be found in [17, 18].
The property 8) guarantees that the solution of the sampled-data system is uniformly bounded
over T , which is important to guarantee that the overall system is stable, and it can be easily
satisfied for generic nonlinear systems, see [19, Section 4.3] for more details.

3.2 Event-Triggered Scheme

This part specifies the triggering condition, i.e., determines the triggering threshold of (5).
Recalling the triggering condition (5), we here specify it as follows

‖xk − x̂k|kj
‖R ≤ η,

k − kj ≤ N,
(15)

where η = εΞ−εf

eNLf T − T�(T )+ξT

eLf T , denoted as the triggering threshold. When either of (15) is
violated, the next triggering instant is set as tkj+1 = tk. In addition, to ensure the validity of
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the triggering condition, i.e., the triggering threshold should be η ≥ 0. As a result, the model
error and the external disturbance should satisfy

T	(T ) + ξT ≤ εΞ − εf

e(N−1)LfT
. (16)

Remark 3.5 1) The main idea of determining the triggering threshold η is to ensure
the feasibility, which is elaborated in Theorem 4.2. Further note that the above triggering
condition (15) involves the model error T	(T ). It can be derived from (15) that a smaller
model error T	(T ) leads to a higher threshold, which implies a larger triggering interval. This
leads to the reduction of the energy resource further. However, a more accurate approximate
model (with smaller model error) always has a more complex expression, which also increases
the difficulty of ETMPC algorithms design. The associated examples will be illustrated in
Section 5.

2) The inequality (16) also provides a guideline to determine the allowable sampling period
T once we know the upper bound of external disturbance ξ in practice. For example, if we know
that the upper bound of a disturbance is ξ1, we need to choose a T1 such that T1	(T1)+ ξ1T1 ≤
(εΞ − εf )/eNLfT1 holds instead of choosing randomly.

So far, the reformulation of the OCP and the determination of the triggering condition are
achieved, based on which the sampled-data ETMPC algorithm for the system (1) is implemented
by our AETMPC strategy. We then verify the validity of the AETMPC strategy.

4 Analysis of the AETMPC Strategy

This section analyzes the feasibility of our AETMPC strategy and the stability of the overall
system.

4.1 Feasibility Analysis

The following lemma is utilized for the feasibility establishment.

Lemma 4.1 If x ∈ Bi+m and y ∈ R
n satisfies

‖x − y‖R ≤ eiLf T emLf T−1

eLf T − 1
(T	(T ) + ξT ), (17)

then y ∈ Bi.

Proof Let z = y − x + ei with ei ∈ Bi, it follows that

‖z‖R ≤ ‖y − x‖R + ‖e‖R

≤
(

eiLf T emLf T − 1
eLf T − 1

+
eiLf T − 1
eLfT − 1

)

(T	(T ) + ξT )

=
e(i+m)Lf T − 1

eLf T − 1
(T	(T ) + ξT ).

Thus, z ∈ Bi+m. Noting that y + ei = z + x ∈ X , we can conclude that y ∈ Bi.
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Theorem 4.2 Consider the system (1) with the event-triggered condition (15). Assume
that the model error and the external disturbance are subject to (16), and Assumptions 2.1
and 3.1 hold, then the AETMPC strategy is feasible.

Proof Suppose that the solution of the OCP at tkj is û(tkj ) = (ûkj |kj
, ûkj+1|kj

, · · · , ûkj+N |kj
).

Based on û(tkj ), we construct a feasible solution u(tkj+1) at time tkj+1 to prove the feasibility
of the AETMPC, as follows:

ukj+1+i|kj+1 =

⎧

⎨

⎩

ûkj+1+i|kj
, i = 0, 1, · · · , N − 1 − (kj+1 − kj),

h(xkj+1+i|kj+1), i = N − (kj+1 − kj), N − (kj+1 − kj) + 1, · · · , N − 1.
(18)

At first, we derive an upper bound of the estimated error at time tkj+1 based on the above
triggering condition (15), which is a prerequisite for the feasibility. By virtue of the inequal-
ity (11), we obtain

‖xkj+1 − x̂kj+1|kj
‖R ≤ T	(T ) + ξT + eLf T ‖xkj+1−1 − x̂kj+1−1|kj

‖R.

From the triggering condition (15), we have ‖xkj+1−1−x̂kj+1−1|kj
‖R ≤ εΞ−εf

eNLf T − T�(T )+ξT

eLf T . Then,
we further obtain

‖xkj+1 − x̂kj+1|kj
‖R ≤ εΞ − εf

e(N−1)Lf T
. (19)

In the sequel, for clarity of exposition, the proof is divided into four aspects.
• xkj+1+i|kj+1 ∈ Xi for all i = 0, 1, · · · , N − (kj+1 − kj).

‖xkj+1+i|kj+1 − x̂kj+1+i|kj
‖R

=‖F a
T (xkj+1+i−1|kj+1 , ukj+1+i−1|kj+1 ) − F a

T (x̂kj+1+i−1|kj
, ûkj+1+i−1|kj

)‖R

≤eLf T ‖xkj+1+i−1|kj+1 − x̂kj+1+i−1|kj
‖R

. . .

≤eiLf T ‖xkj+1 − x̂kj+1|kj
‖R

≤eiLf T e(kj+1−kj)Lf T − 1
eLf T − 1

(T	(T ) + ξT ), (20)

where the last inequality holds with substituting i = kj+1 − kj into the inequality (11). Since
x̂kj+1+i|kj

∈ Bi+kj+1−kj , then we have xkj+1+i|kj+1 ∈ Xi based on Lemma 4.1.
• xkj+1+i|kj+1 ∈ Xi for all i = N −(kj+1−kj)+1, · · · , N−1. First, we show xkj+N |kj+1 ∈ Ξ .

This guarantees that the auxiliary law h(x) is allowed to be applied from tkj+N . Substituting
i = N −(kj+1−kj) into (20), ‖xkj+N |kj+1 − x̂kj+N |kj

‖R ≤ e(N−(kj+1−kj))Lf T ‖xkj+1 − x̂kj+1|kj
‖R

can be obtained. Then, considering (19), we obtain ‖xkj+N |kj+1 − x̂kj+N |kj
‖R ≤ εΞ − εf . Since

x̂kj+N |kj
∈ Xf , we have ‖xkj+N |kj+1‖R ≤ εΞ , which implies xkj+N |kj+1 ∈ Ξ . Then, applying

the auxiliary control law h(x) and according to the properties 1)–2) in Assumption 3.2, one can
derive that xkj+1+i|kj+1 ∈ Xf ⊂ Xi for all i = N − (kj+1 − kj) + 1, · · · , N − 1.

• xkj+1+N |kj+1 ∈ Xf . As verified above, we directly obtain xkj+1+N−1|kj+1 ∈ Xf . Then, this
argument is satisfied according to the property 2) of Assumption 3.2 immediately.
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• ukj+1+i|kj+1 ∈ U . Since xkj+1+i|kj+1 ∈ Ξ for all i = N−(kj+1−kj)+1, · · · , N−1 as verified
above, then h(xkj+1+i|kj+1 ) ∈ U by virtue of the property 1) in Assumption 3.2. Incorporating
h(xkj+1+i|kj+1 ) ∈ U and ûkj+1+i|kj

∈ U , this claim completed.
These complete the proof.

4.2 Stability Analysis

The stability property of the overall system under our AETMPC strategy is analyzed by
the theorem given below. Hereafter, XMPC denotes the state sets for which the solution of the
OCP (13) exists.

Theorem 4.3 Suppose that Assumption 2.1, 3.1, and 3.2 hold and the sampling period is
T . Then, for all initial state x0 ∈ XMPC , the overall system under the AETMPC strategy is
ISpS.

Proof We divide this proof into two parts: 1) the exact DTM of the system (1) is ISpS; 2)
the solution of the overall sampled-data system is uniformly bounded over T . Then according
to [20, Theorem 5], 1)+2)⇒ the overall system is ISpS.

1) To establish 1), we will show that the cost function JT (x(tk), u(tk), N) is an ISpS
Lyapunov function, then the same stability property of the exact DTM of the system (1) is
ensured as in [21]. Let the cost function at time tk be denoted as JT (xk) = JT (x(tk), u(tk), N).
Referring to [21], JT (x(tk)) is called an ISpS Lyapunov function, if the following

α1(‖xk‖) ≤ JT (xk) ≤ α2(‖xk‖), (21)

JT (xk+1) − JT (xk) ≤ −α3(‖xk‖) + γ(ξ) + δ (22)

hold with a constant δ > 0 and functions α1, α2, α3 ∈ K∞, γ ∈ K for all x(tk) ∈ XMPC ,
wT,k ∈ W = {wT : ‖wT ‖R ≤ ξT }.

First of all, the lower bound of JT (xk) is established. Considering the property 7) in
Assumption 3.2, we obtain for xk ∈ XMPC ,

JT (xk) ≥ T l(xk, uk) ≥ T α̃3(‖xk‖) =: α1(‖xk‖).

Then, by virtue of the properties 3) and 5) in Assumption 3.2, it follows that

g(x̂k+N |k) − g(x̂k|k) ≤ −
N−1
∑

i=0

T l(x̂k+i|k, ûk+i|k) (23)

substituting (23) into (14), we have JT (xk) ≤ g(x̂k|k) ≤ α̃2(‖xk‖) for all xk ∈ Ξ . To get the
upper bound of JT (xk) in XMPC , we follow the idea in [8, Theorem 1]. Since X ,U and W
are all compact sets, there exists a ˜J such that JT (xk) ≤ ˜J for all xk ∈ XMPC . Define a set
Br ∈ R

n, Br = {x ∈ R
n : ‖x‖ ≤ r} ⊂ Xf . Let ε = max

(

1,
˜J

α̃2(r)

)

, we have

JT (xk) ≤ α2(‖xk‖), ∀xk ∈ XMPC

with α2(‖x‖) = ε · α̃2(‖x‖).
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Finally, we derive the difference of the cost function JT (x(tk), u(tk), N) over two successive
time tk+1 and tk. Assume that a feasible solution u(tk+1) of the OCP is constructed in the same
way as in (18) based on the optimal solution û(tk). Note that if the triggered condition (15) is
violated at time tk, then the OCP is solved, J0

T (xk) = JT (x(tk), û(tk), N); otherwise, JT (xk) =
JT (x(tk), u(tk), N). Thus, four scenarios should be considered, including (a) JT (xk+1)−J0

T (xk);
(b) J0

T (xk+1) − JT (xk); (c) J0
T (xk+1) − J0

T (xk); and (d) JT (xk+1) − JT (xk). Since J0
T (xk) ≤

JT (xk) and J0
T (xk+1) ≤ JT (xk+1), the difference of scenario (a) is the largest of these four

scenarios, we only need to focus on scenario (a). We then have

JT (xk+1) − J0
T (xk) = − T l(x̂k|k, ûk|k) +

k+N−1
∑

l=k+1

T l(xl|k+1, ul|k+1) − T l(x̂l|k, ûl|k)

+ T l(xk+N |k+1, uk+N |k+1) + g(xk+1+N |k+1) − g(x̂k+N |k). (24)

Considering the properties 3)–7), we obtain

g(xk+1+N |k+1) − g(xk+N |k) ≤ −T l(xk+N |k, uk+N |k),

l(xl|k+1, ul|k+1) − l(x̂l|k, ûl|k) ≤ Lle(l−k−1)Lf T (T	(T ) + ξT ),

g(xk+N |k) − g(x̂k+N |k) ≤ Lge(N−1)LfT (T	(T ) + ξT ).

(25)

Substituting (25) to (24), we obtain the difference of cost function as

JT (xk+1) − JT (xk) ≤ JT (xk+1) − J0
T (xk)

≤ −α3(‖xk‖) + γ(ξ) + δ,

where α3(s) = T α̃3(s),

γ(s) =
[

T 2Lle(N−1)Lf T /(eLf T − 1) + TLge(N−1)Lf T
]

s

and
δ = TLle(N−1)Lf T /(eLf T − 1)T	(T ) + Lge(N−1)LfT T	(T ).

2) Considering the property 8) in Assumption 3.2 and using the same proof technique as
in [19, Remark 4.13], the uniformly bounded solution of the overall sampled-data system can
be easily obtained, therefore omitted here.

Incorporating 1) and 2), the overall system is ISpS.

5 Simulation Example

Consider the continuous-time cart-damper-spring system as follows
⎧

⎨

⎩

ẋ1(t) = x2(t),

ẋ2(t) = − k0

M
e−x1(t)x1(t) − h

M
x2(t) +

u(t)
M

+ w(t),
(26)

where x1(t) is the displacement and x2(t) is the velocity. The related parameters of the system
are given as: M = 1 kg; k0 = 0.15 N/m; h = 0.8 N·s/m. The constraints on the state and
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control input are given as X = {x : −1 ≤ x ≤ 1} and U = {u : −0.5 ≤ u ≤ 0.5}. The external
disturbance is limited by ‖w(t)‖ ≤ 0.005. For simplify, we here formulate the specific form of
the disturbance-free Euler approximation of the system (26).

⎧

⎪

⎨

⎪

⎩

x1,k+1 = x1,k + Tx2,k,

x2,k+1 =
(

1 − Th

M

)

x2,k − k0T

M
e−x1,kx1,k +

Tuk

M
.

(27)

And the forms of other general approximations, such as modified Euler approximation and
fourth-order Runge-Kutta approximation, can be seen in [22].

Considering the implementation of AETMPC strategy, the prediction horizon is set to N =5.
Recalling the condition (16), the sampling period is selected as T = 0.1 s to guarantee the
validity of the triggering condition. The two weighted matrices of the cost function are assumed
to be Q = [1 0; 0 1] and P = 1. By following the idea in [18], the weighted matrix R, the
terminal set Xf and another set Ξ are chosen as R = [ 3.8790 2.1713

2.1713 3.222 ], Xf = {x : ‖x‖R ≤ 0.7071}
and Ξ = {x : ‖x‖R ≤ 0.6782}, respectively. The initial condition is x0 = [0.5,−0.8].

The simulation is conducted by employing Matlab subroutine fmincon. To show the validity
of our AETMPC strategy, we consider three general approximations, that is, Euler approxi-
mation, modified Euler approximation and fourth-order Runge-Kutta approximation. Addi-
tionally, the robust approximation-based MPC (RAMPC) scheme in [23] is also shown here
to compare with the proposed AETMPC strategy. The results are illustrated in Figures 2–4.
It can be seen that the continuous-time state and control constraints are all satisfied and the
overall system is ISpS under two schemes from Figures 2–3. Further, the state and control tra-
jectories are similar under two schemes, indicating that the AETMPC strategy is comparable
to those under the RAMPC scheme in terms of the constraints satisfaction. Compared with
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Figure 2 Comparison of system states under the AETMPC strategy (with Euler

approximation, modified Euler approximation and Runge-Kutta approxi-

mation) and the RAMPC scheme
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Figure 4 Comparison of triggering instants under the RAMPC scheme and the

AETMPC strategy

the RAMPC scheme in [23], it can be easily observed from Figure 4 that the frequency of
computing the OCP is reduced significantly by the proposed AETMPC strategy. Moreover,
modified Euler approximation and fourth-order Runge-Kutta approximation are more accu-
rate than Euler approximation, which means that the model error (T	(T )) of the former two
approximations is smaller, and hence the triggering threshold in (15) is higher, resulting in a
larger triggering interval.
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6 Conclusion

The continuous-time constrained nonlinear systems with disturbances have been investi-
gated. To implement of ETMPC for continuous-time systems under the digital platform, an
AETMPC strategy has been proposed, and based on which continuous-time state and con-
trol input constraints satisfaction have been achieved. More importantly, the feasibility of the
AETMPC strategy has been analyzed and the ISpS property of the overall system under this
strategy has been established. At last, we have verified the effectiveness of the proposed results
through a numerical simulation.
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